201 research outputs found

    Editorial-data analysis in metabolomics.

    Get PDF

    Genetic algorithm based two-mode clustering of metabolomics data

    Get PDF
    Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering methods allow for analysis of the behavior of subsets of metabolites under different experimental conditions. In addition, the results are easily visualized. In this paper we introduce a two-mode clustering method based on a genetic algorithm that uses a criterion that searches for homogeneous clusters. Furthermore we introduce a cluster stability criterion to validate the clusters and we provide an extended knee plot to select the optimal number of clusters in both experimental and metabolite modes. The genetic algorithm-based two-mode clustering gave biological relevant results when it was applied to two real life metabolomics data sets. It was, for instance, able to identify a catabolic pathway for growth on several of the carbon sources

    Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data

    Get PDF
    Longitudinal intervention studies with repeated measurements over time are an important type of experimental design in biomedical research. Due to the advent of “omics”-sciences (genomics, transcriptomics, proteomics, metabolomics), longitudinal studies generate increasingly multivariate outcome data. Analysis of such data must take both the longitudinal intervention structure and multivariate nature of the data into account. The ASCA+-framework combines general linear models with principal component analysis and can be used to separate and visualize the multivariate effect of different experimental factors. However, this methodology has not yet been developed for the more complex designs often found in longitudinal intervention studies, which may be unbalanced, involve randomized interventions, and have substantial missing data. Here we describe a new methodology, repeated measures ASCA+ (RM-ASCA+), and show how it can be used to model metabolic changes over time, and compare metabolic changes between groups, in both randomized and non-randomized intervention studies. Tools for both visualization and model validation are discussed. This approach can facilitate easier interpretation of data from longitudinal clinical trials with multivariate outcomes

    Variable selection for binary classification using error rate p-values applied to metabolomics data

    Get PDF
    BACKGROUND: Metabolomics datasets are often high-dimensional though only a limited number of variables are expected to be informative given a specific research question. The important task of selecting informative variables can therefore become complex. In this paper we look at discriminating between two groups. Two tasks need to be performed: (i) finding variables which differ between the two groups; and (ii) determining how the selected variables can be used to classify new subjects. We introduce an approach using minimum classification error rates as test statistics to find discriminatory and therefore informative variables. The thresholds resulting in the minimum error rates can be used to classify new subjects. This approach transforms error rates into p-values and is referred to as ERp. RESULTS: We show that non-parametric hypothesis testing, based on minimum classification error rates as test statistics, can find statistically significantly shifted variables. The discriminatory ability of variables becomes more apparent when error rates are evaluated based on their corresponding p-values, as relatively high error rates can still be statistically significant. ERp can handle unequal and small group sizes, as well as account for the cost of misclassification. ERp retains (if known) or reveals (if unknown) the shift direction, aiding in biological interpretation. The threshold resulting in the minimum error rate can immediately be used to classify new subjects. We use NMR generated metabolomics data to illustrate how ERp is able to discriminate subjects diagnosed with Mycobacterium tuberculosis infected meningitis from a control group. The list of discriminatory variables produced by ERp contains all biologically relevant variables with appropriate shift directions discussed in the original paper from which this data is taken. CONCLUSIONS: ERp performs variable selection and classification, is non-parametric and aids biological interpretation while handling unequal group sizes and misclassification costs. All this is achieved by a single approach which is easy to perform and interpret. ERp has the potential to address many other characteristics of metabolomics data. Future research aims to extend ERp to account for a large proportion of observations below the detection limit, as well as expand on interactions between variables
    • …
    corecore